четверг, 18 февраля 2021 г.

19 февраля 2021 года

Группа 105

Предмет :" Математика"

Тема урока :"Представление данных математической статистики"

 

Введение

Математическая статистика — наука о математических методах систематизации и использования статистических данных для научных и практических выводов. Во многих своих разделах математическая статистика опирается на теорию вероятностей, позволяющую оценить надежность и точность выводов, делаемых на основании ограниченного статистического материала (напр., оценить необходимый объем выборки для получения результатов требуемой точности при выборочном обследовании).

В теории вероятностей рассматриваются случайные величины с заданным распределением или случайные эксперименты, свойства которых целиком известны. Предмет теории вероятностей — свойства и взаимосвязи этих величин (распределений).

Но часто эксперимент представляет собой черный ящик, выдающий лишь некие результаты, по которым требуется сделать вывод о свойствах самого эксперимента. Наблюдатель имеет набор числовых (или их можно сделать числовыми) результатов, полученных повторением одного и того же случайного эксперимента в одинаковых условиях.

При этом возникают, например, следующие вопросы: Если мы наблюдаем одну случайную величину — как по набору ее значений в нескольких опытах сделать как можно более точный вывод о ее распределении?

Примером такой серии экспериментов может служить социологический опрос, набор экономических показателей или, наконец, последовательность гербов и решек при тысячекратном подбрасывании монеты.

Все вышеприведенные факторы обуславливают актуальность и значимость тематики работы на современном этапе, направленной на глубокое и всестороннее изучение основных понятий математической статистики.

В связи с этим целью данной работы является систематизация, накопление и закрепление знаний о понятиях математической статистики.

1. Предмет и методы математической статистики

Математическая статистика — наука о математических методах анализа данных, полученных при проведении массовых наблюдений (измерений, опытов). В зависимости от математической природы конкретных результатов наблюдений статистика математическая делится на статистику чисел, многомерный статистический анализ, анализ функций (процессов) и временных рядов, статистику объектов нечисловой природы. Существенная часть статистики математической основана на вероятностных моделях. Выделяют общие задачи описания данных, оценивания и проверки гипотез. Рассматривают и более частные задачи, связанные с проведением выборочных обследований, восстановлением зависимостей, построением и использованием классификаций (типологий) и др.

Для описания данных строят таблицы, диаграммы, иные наглядные представления, например, корреляционные поля. Вероятностные модели обычно не применяются. Некоторые методы описания данных опираются на продвинутую теорию и возможности современных компьютеров. К ним относятся, в частности, кластер-анализ, нацеленный на выделение групп объектов, похожих друг на друга, и многомерное шкалирование, позволяющее наглядно представить объекты на плоскости, в наименьшей степени исказив расстояния между ними.

Методы оценивания и проверки гипотез опираются на вероятностные модели порождения данных. Эти модели делятся на параметрические и непараметрические. В параметрических моделях предполагается, что изучаемые объекты описываются функциями распределения, зависящими от небольшого числа (1-4) числовых параметров. В непараметрических моделях функции распределения предполагаются произвольными непрерывными. В статистике математической оценивают параметры и характеристики распределения (математическое ожидание, медиану, дисперсию, квантили и др.), плотности и функции распределения, зависимости между переменными (на основе линейных и непараметрических коэффициентов корреляции, а также параметрических или непараметрических оценок функций, выражающих зависимости) и др. Используют точечные и интервальные (дающие границы для истинных значений) оценки.

В математической статистике есть общая теория проверки гипотез и большое число методов, посвященных проверке конкретных гипотез. Рассматривают гипотезы о значениях параметров и характеристик, о проверке однородности (то есть о совпадении характеристик или функций распределения в двух выборках), о согласии эмпирической функции распределения с заданной функцией распределения или с параметрическим семейством таких функций, о симметрии распределения и др.

Большое значение имеет раздел математической статистики, связанный с проведением выборочных обследований, со свойствами различных схем организации выборок и построением адекватных методов оценивания и проверки гипотез.

Задачи восстановления зависимостей активно изучаются более 200 лет, с момента разработки К. Гауссом в 1794 г. метода наименьших квадратов. В настоящее время наиболее актуальны методы поиска информативного подмножества переменных и непараметрические методы.

Разработка методов аппроксимации данных и сокращения размерности описания была начата более 100 лет назад, когда К. Пирсон создал метод главных компонент. Позднее были разработаны факторный анализ[1] и многочисленные нелинейные обобщения.

Различные методы построения (кластер-анализ), анализа и использования (дискриминантный анализ) классификаций (типологий) именуют также методами распознавания образов (с учителем и без), автоматической классификации и др.

Математические методы в статистике основаны либо на использовании сумм (на основе Центральной Предельной Теоремы теории вероятностей) или показателей различия (расстояний, метрик), как в статистике объектов нечисловой природы. Строго обоснованы обычно лишь асимптотические результаты. В настоящее время компьютеры играют большую роль в математической статистике. Они используются как для расчетов, так и для имитационного моделирования (в частности, в методах размножения выборок и при изучении пригодности асимптотических результатов).

2. Основные понятия математической статистики

2.1 Основные понятия выборочного метода

Пусть — случайная величина, наблюдаемая в случайном эксперименте. Предполагается, что вероятностное пространство задано (и не будет нас интересовать).

Будем считать, что, проведя раз этот эксперимент в одинаковых условиях, мы получили числа — значения этой случайной величины в первом, втором, и т.д. экспериментах. Случайная величина имеет некоторое распределение , которое нам частично или полностью неизвестно.

Рассмотрим подробнее набор , называемый выборкой .

В серии уже произведенных экспериментов выборка — это набор чисел. Но если эту серию экспериментов повторить еще раз, то вместо этого набора мы получим новый набор чисел. Вместо числа появится другое число — одно из значений случайной величины . То есть (и , и , и т.д.) — переменная величина, которая может принимать те же значения, что и случайная величина , и так же часто (с теми же вероятностями). Поэтому до опыта — случайная величина, одинаково распределенная с , а после опыта — число, которое мы наблюдаем в данном первом эксперименте, т.е. одно из возможных значений случайной величины .

Выборка объема — это набор из независимых и одинаково распределенных случайных величин («копий »), имеющих, как и , распределение .

Что значит «по выборке сделать вывод о распределении»? Распределение характеризуется функцией распределения, плотностью или таблицей, набором числовых характеристик — и т.д. По выборке нужно уметь строить приближения для всех этих характеристик.

2 .2 Выборочное распределение

Рассмотрим реализацию выборки на одном элементарном исходе — набор чисел . На подходящем вероятностном пространстве введем случайную величину , принимающую значения с вероятностями по (если какие-то из значений совпали, сложим вероятности соответствующее число раз). Таблица распределения вероятностей и функция распределения случайной величины выглядят так:

Распределение величины называют эмпирическим или выборочным распределением. Вычислим математическое ожидание и дисперсию величины и введем обозначения для этих величин:

Точно так же вычислим и момент порядка 

В общем случае обозначим через величину

Если при построении всех введенных нами характеристик считать выборку  набором случайных величин, то и сами эти характеристики —  — станут величинами случайными. Эти характеристики выборочного распределения используют для оценки (приближения) соответствующих неизвестных характеристик истинного распределения.

Причина использования характеристик распределения для оценки характеристик истинного распределения (или ) — в близости этих распределений при больших .

Рассмотрим, для примера, подбрасываний правильного кубика. Пусть — количество очков, выпавших при -м броске, . Предположим, что единица в выборке встретится раз, двойка — раз и т.д. Тогда случайная величина будет принимать значения 1 , 6 с вероятностями  соответственно. Но эти пропорции с ростом приближаются к согласно закону больших чисел. То есть распределение величины в некотором смысле сближается с истинным распределением числа очков, выпадающих при подбрасывании правильного кубика.

Мы не станем уточнять, что имеется в виду под близостью выборочного и истинного распределений. В следующих параграфах мы подробнее познакомимся с каждой из введенных выше характеристик и исследуем ее свойства, в том числе ее поведение с ростом объема выборки.

2 .3 Эмпирическая функция распределения, гистограмма

Поскольку неизвестное распределение можно описать, например, его функцией распределения , построим по выборке «оценку» для этой функции.

Определение 1.

Эмпирической функцией распределения, построенной по выборке объема , называется случайная функция , при каждом равная

Напоминание: Случайная функция

называется индикатором события . При каждом это — случайная величина, имеющая распределение Бернулли с параметром . почему?

Иначе говоря, при любом значение , равное истинной вероятности случайной величине быть меньше , оценивается долей элементов выборки, меньших .

Если элементы выборки упорядочить по возрастанию (на каждом элементарном исходе), получится новый набор случайных величин, называемый вариационным рядом :

Здесь

Элемент , называется -м членом вариационного ряда или -й порядковой статистикой .

Пример 1.

Выборка: 

Вариационный ряд: 

Рис. 1. Пример 1

Эмпирическая функция распределения имеет скачки в точках выборки, величина скачка в точке равна , где — количество элементов выборки, совпадающих с .

Можно построить эмпирическую функцию распределения по вариационному ряду:

Другой характеристикой распределения является таблица (для дискретных распределений) или плотность (для абсолютно непрерывных). Эмпирическим, или выборочным аналогом таблицы или плотности является так называемая гистограмма .

Гистограмма строится по группированным данным. Предполагаемую область значений случайной величины (или область выборочных данных) делят независимо от выборки на некоторое количество интервалов (не обязательно одинаковых). Пусть — интервалы на прямой, называемые интервалами группировки . Обозначим для через число элементов выборки, попавших в интервал :

(1)

На каждом из интервалов строят прямоугольник, площадь которого пропорциональна . Общая площадь всех прямоугольников должна равняться единице. Пусть — длина интервала . Высота прямоугольника над равна

Полученная фигура называется гистограммой.

Пример 2.

Имеется вариационный ряд (см. пример 1):

Разобьем отрезок на 4 равных отрезка. В отрезок попали 4 элемента выборки, в — 6, в — 3, и в отрезок попали 2 элемента выборки. Строим гистограмму (рис. 2). На рис. 3 — тоже гистограмма для той же выборки, но при разбиении области на 5 равных отрезков.

Рис. 2. Пример 2Рис. 3. Пример 2

Замечание 1.

В курсе «Эконометрика» утверждается, что наилучшим числом интервалов группировки («формула Стерджесса») является .

Здесь — десятичный логарифм, поэтому , т.е. при увеличении выборки вдвое число интервалов группировки увеличивается на 1. Заметим, что чем больше интервалов группировки, тем лучше. Но, если брать число интервалов, скажем, порядка , то с ростом гистограмма не будет приближаться к плотности.

Справедливо следующее утверждение:

Если плотность распределения элементов выборки является непрерывной функцией, то при так, что , имеет место поточечная сходимость по вероятности гистограммы к плотности.

Так что выбор логарифма разумен, но не является единственно возможным.

Заключение

Математическая (или теоретическая) статистика опирается на методы и понятия теории вероятностей, но решает в каком-то смысле обратные задачи.

Если мы наблюдаем одновременно проявление двух (или более) признаков, т.е. имеем набор значений нескольких случайных величин — что можно сказать об их зависимости? Есть она или нет? А если есть, то какова эта зависимость?

Часто бывает возможно высказать некие предположения о распределении, спрятанном в «черном ящике», или о его свойствах. В этом случае по опытным данным требуется подтвердить или опровергнуть эти предположения («гипотезы»). При этом надо помнить, что ответ «да» или «нет» может быть дан лишь с определенной степенью достоверности, и чем дольше мы можем продолжать эксперимент, тем точнее могут быть выводы. Наиболее благоприятной для исследования оказывается ситуация, когда можно уверенно утверждать о некоторых свойствах наблюдаемого эксперимента — например, о наличии функциональной зависимости между наблюдаемыми величинами, о нормальности распределения, о его симметричности, о наличии у распределения плотности или о его дискретном характере, и т.д.

Итак, о (математической) статистике имеет смысл вспоминать, если

· имеется случайный эксперимент, свойства которого частично или полностью неизвестны,

· мы умеем воспроизводить этот эксперимент в одних и тех же условиях некоторое (а лучше — какое угодно) число раз.

Комментариев нет:

Отправить комментарий

 04.06.2021 года Группа 311 Предмет :"Устройство, техническое обслуживание и ремонт автомобилей" Экзаменационный материал для сдач...