25 января 2021 года
Группа 108
Предмет :"Математика"
Тема урока :" Треуголь
Что такое правильная пирамида: определение, виды, свойства
В данной публикации мы рассмотрим определение, виды (треугольная, четырехугольная, шестиугольная) и основные свойства правильной пирамиды. Представленная информация сопровождается наглядными рисунками для лучшего восприятия.
Определение правильной пирамиды
Правильная пирамида – это пирамида, основанием которой является правильный многоугольник, а вершина фигуры проецируется в центр ее основания.
Самые распространенные разновидности правильных пирамид: треугольная, четырехугольная и шестиугольная. Рассмотрим их подробнее.
Виды правильной пирамиды
Правильная треугольная пирамида
- Основание – правильный/равносторонний треугольник ABC.
- Боковые грани – одинаковые равнобедренные треугольники: ADC, BDC и ADB.
- Проекция вершины D на основание – точка O, которая является точкой пересечения высот/медиан/биссектрис треугольника ABC.
- DO – высота пирамиды.
- DL и DM – апофемы, т.е. высоты боковых граней (равнобедренных треугольников). Всего их три (по одной на каждую грань), но на рисунке выше изображено два, чтобы не перегружать его.
- ⦟DAM = ⦟ DBL = α (углы между боковыми ребрами и основанием).
- ⦟DLB = ⦟DMA = β (углы между боковыми гранями и плоскостью основания).
- Для такой пирамиды верно соотношение:
AO:OM = 2:1 или BO:OL = 2:1.
Примечание: если у правильной треугольной пирамиды все ребра равны, она также называется правильным тетраэдром.
Правильная четырехугольная пирамида
- Основание – правильный четырехугольник ABCD, другими словами, квадрат.
- Боковые грани – равные равнобедренные треугольники: AEB, BEC, CED и AED.
- Проекция вершины E на основание – точка O, является точкой пересечения диагоналей квадрата ABCD.
- EO – высота фигуры.
- EN и EM – апофемы (всего их 4, на рисунке в качестве примера изображено только два).
- Равные углы между боковыми ребрам/гранями и основанием указаны соответствующими буквами (α и β).
Правильная шестиугольная пирамида
- Основание – правильный шестиугольник ABCDEF.
- Боковые грани – равные равнобедренные треугольники: AGB, BGC, CGD, DGE, EGF и FGA.
- Проекция вершины G на основание – точка O, является точкой пересечения диагоналей/биссектрис шестиугольника ABCDEF.
- GO – высота пирамиды.
- GN – апофема (всего их должно быть шесть).
Свойства правильной пирамиды
- Все боковые ребра фигуры равны. Другими словами вершина пирамиды находится на одинаковом расстоянии от всех углов ее основания.
- Угол между всеми боковыми ребрами и основанием одинаковый.
- Все грани наклонены к основанию под одним и тем же углом.
- Площади всех боковых граней равны.
- Все апофемы равны.
- Вокруг пирамиды можно описать сферу, центром которой будет точка пересечения перпендикуляров, проведенных к серединам боковых ребер.
- В пирамиду можно вписать сферу, центром которой будет точка пересечения биссектрис, берущих начало в углах между боковыми ребрами и основанием фигуры.
Примечание: Формулы для нахождения площади поверхности, а также объема пирамиды представлены в отдельных публикациях.
ная пирамида"
Комментариев нет:
Отправить комментарий