понедельник, 30 ноября 2020 г.

30 ноября 2020 года

Группа 312

Предмет :"Техника и технология ручной дуговой сварки в среде инертных газов"

Тема урока:"Плазмотроны и Принцип действия ручного плазмотрона Во многих современных плазменных резаках первичная дуга, возбуждаемая между электродом и соплом, используется для ионизации газа и генерирования плазмы в самом плазмотроне, до того, как происходит перенос дуги на обрабатываемый металл. В ручных плазмотронах такой перенос происходит при соприкосновении наконечника с металлом. Создаётся искра, после которой запускается высокочастотная цепь, дуга в которой начинается горение плавно и устойчиво. Основными характеристиками ручного плазмотрона являются: Ток зажигания, А. Рабочий ток, А. Ширина дуги, мм. Скорость движения плазменного потока, м/с. Высокую скорость резки плазмотрону обеспечивает выходное сопло особой формы. Оно заставляет ионизированный газ сжиматься с высокой скоростью. При этом концентрация тепловой мощности достигает пределов, достаточных для локального расплавления металла. Горелка плазмотрона включает в себя две концентрично расположенные трубки. Во внутренней движется плазменный поток, а во внешней – газ, разогретый до менее высоких температур. Этот внешний поток ограждает периметр зоны резания, обеспечивая точность реза, и защищает прилегающие зоны от окисления. Устройство Горелка состоит из: электрододержателя, электрически изолированного от обеих внутренних трубок; вихревого кольца, которое обеспечивает круговое движение плазмы; полого электрода, внутри которого установлены рабочая и экранирующая трубки; возвратной пружины; наконечника; защитного колпачка. Конструктивно к плазмотрону для плазменной резки относят также шланги, по которым осуществляется подвод плазмообразующего воздуха. Форма отверстия в сопле определяет размеры и конфигурацию дуги. Оно рассчитывается таким образом, чтобы выдерживать поток ионизированного газа, нагретого до 4500…5000°С, при плотности тока до 40000 °С/мм2. Последовательность работы ручного плазмотрона такова. При выключенном оборудовании рабочие поверхности детали и наконечника соприкасаются между собой, поэтому головка плазмотрона не должна быть прижата к металлу. При включении резака источник питания начинает генерировать постоянный ток, мощность которого может достигает 500 А. Ток ионизирует воздух, находящийся в промежутке между трубками, который постепенно ионизируется, приобретая необходимую температуру. В результате инициируется поток плазмообразующего газа. При повышении давления газа до нужных пределов, пружина раздвигает между собой электрод и сопло. Образуется промежуток, в котором возбуждается электрическая искра. Она и преобразует воздушный поток в струю плазмы. Затем происходит переключение направления постоянного тока по наиболее короткому пути между электродом и заготовкой. Такое движение длится до тех пор, пока триггер не возвращён в своё прежнее положение. Конструкция и порядок эксплуатации Одним из наиболее популярных видов ручных плазмотронов является Panasonic P80. Работа на нём должна производиться с учётом некоторых особенностей. В частности, перед началом резки обязательно соблюдение следующих условий: Во время возбуждения дуги нельзя касаться торцом наконечника кромки основного материала. Это приведёт к образованию неконтролируемой дуги, которая сожжёт наконечник. Процесс резки нельзя начинать при вертикальном расположении наконечника относительно основного металла. В этом случае внутри наконечника образуется дуга. При резке пластин толщиной более 16 мм необходимо убедиться, что дуга достигла нижней стороны заготовки, и только тогда перемещать горелку в новое положение. При работе резака рекомендуется выдерживать зазор около 5 мм между заготовкой и наконечником. С этой целью в комплектации к резаку Р80 предусмотрена направляющая, которая электрически изолируется от разрезаемого металла. Отклонение от перпендикулярности оси резака от поверхности заготовки не должно превышать 50, а направление движения инструмента должно быть противоположным направлению плазменной струи. Все типы ручных плазмотронов – устройства повышенной опасности. Поражающими факторами являются яркое свечение дуги, высокие токи обработки и температуры. Поэтому необходимо тщательно придерживаться правил эксплуатации плазмореза, которые указывает производитель. Цена ручного плазмореза Panasonic Р80 – от 5500 руб. Ближайшим отечественным аналогом плазмотрона Р80 считается резак П2-180, цены на который стартуют от 6000 руб. Более мощные модели, например, FBP60 от Fubag, стоят дороже –  до 15000 руб. Доступны и менее мощные модели ручных плазмотронов, в частности, CUT РТ31 (от 2000 руб.).

Источник: https://proinstrumentinfo.ru/plazmotron-dlya-lazernoj-rezki-r80-rt31-p2180/горелки, плазмообразующие сопла" 

 30 ноября 2020

 Группа 311

 Предмет :"Устройство, техническое обслуживание и ремонт автомобиля"

 Тема урока :"Назначение уст

Принцип работы гидравлической тормозной системы автомобиля

Автор:  21306

Гидравлический тип тормозной системы используют на легковых автомобилях, внедорожниках, микроавтобусах, малогабаритных грузовиках и спецтехнике. Рабочая среда - тормозная жидкость, 93-98% которой составляют полигликоли и эфиры этих веществ. Остальные 2-7% - присадки, которые защищают жидкости от окисления, а детали и узлы от коррозии.

Устройство тормозной системы

Схема гидравлической тормозной системы

Составные элементы гидравлической тормозной системы:

  • 1 - педаль тормоза;
  • 2 - центральный тормозной цилиндр;
  • 3 - резервуар с жидкостью;
  • 4 - вакуумный усилитель;
  • 5, 6 - транспортный трубопровод;
  • 7 - суппорт с рабочим гидроцилиндром;
  • 8 - тормозной барабан;
  • 9 - регулятор давления;
  • 10 - рычаг ручного тормоза;
  • 11 - центральный трос ручного тормоза;
  • 12 - боковые тросы ручного тормоза.

Чтобы понять работу тормозов, рассмотрим подробнее функционал каждого элемента.

Педаль тормоза

Это рычаг, задача которого - передача усилия от водителя на поршни главного цилиндра. Сила нажатия влияет на давление в системе и скорость остановки автомобиля. Чтобы уменьшить требуемое усилие, на современных автомобилях есть усилители тормозов.

Главный цилиндр и резервуар с жидкостью

Центральный тормозной цилиндр - узел гидравлического типа, состоящий из корпуса и четырех камер с поршнями. Камеры заполнены тормозной жидкостью. При нажатии на педаль, поршни увеличивают давление в камерах и усилие передается по трубопроводу на суппорты.

Каталог тормозных суппортов

 Перейти

Над главным тормозным цилиндром расположен бачок с запасом “тормозухи”. Если тормозная система протекает, уровень жидкости в цилиндре уменьшается и в него начинает поступать жидкость из резервуара. Если уровень “тормозухи” упадет ниже критической отметки, на приборной панели начнет мигать индикатор ручного тормоза. Критический уровень жидкости чреват отказом тормозов.

Вакуумный усилитель

Тормозной усилитель стал популярный благодаря внедрению гидравлики в тормозные системы. Причина - чтобы остановить автомобиль с гидравлическими тормозами нужно больше усилий, чем в случае с пневматикой.

Вакуумный усилитель создает вакуум с помощью впускного коллектора. Полученная среда давит на вспомогательный поршень и в разы увеличивает давление. Усилитель облегчает торможение, делает вождение комфортным и легким.

Трубопровод

В гидравлических тормозах четыре магистрали - по одной на каждый суппорт. По трубопроводу жидкость из главного цилиндра попадает в усилитель, увеличивающий давление, а затем по отдельным контурам поставляется в суппорты. Металлические трубки с суппортами соединяют гибкие резиновые шланги, которые нужны, чтобы связать подвижные и неподвижные узлы.

Тормозной суппорт

Узел состоит из:

  • корпуса;
  • рабочего цилиндра с одним или несколькими поршнями;
  • штуцера прокачки;
  • посадочных мест колодок;
  • креплений.

Если узел подвижный, то поршни расположены с одной стороны от диска, а вторую колодку прижимает подвижная скоба, которая движется на направляющих. У неподвижного тормозного суппорта поршни расположены по обе стороны диска в цельном корпусе. Суппорта крепят к ступице или к поворотному кулаку.

Тормозной суппорт с ручником

Задний тормозной суппорт с системой ручного тормоза

Жидкость поступает в рабочий цилиндр суппорта и выдавливает поршни, прижимая колодки к диску и останавливая колесо. Если отпустить педаль, жидкость возвращается, а так как система герметичная, подтягивает и возвращает на место поршни с колодками.ройство и принцип работы тормозной системы с гидроприводом

четверг, 26 ноября 2020 г.

27 ноября 2020

Группа 303

Предмет :"Основы технологии сварки и сварочное оборудование"

Тема урока :"Особенности плавления и виды переноса  электродного металла на изделие"

 

Перенос электродного металла

Конец электрода при сварке нагревается до температуры 2300-2500 °С и в результате на нем образуются капли расплавленного металла.

Перенос металла - процесс перехода расплавленного электродного металла в сварочную ванну.

Перенос металла всегда происходит от сварочного электрода к изделию. Непосредственно под дугой на металле изделия образуется углубление, заполненное жидким металлом, которое называется сварочной ванной. Одновременно под действием теплоты дуги расплавляется металл на конце электрода и в виде капель проходит через дуговой промежуток в сварочную ванну, образуя сварной шов.

На рис. 5.14 показаны стадии процесса плавления электрода и основного металла. Вначале под действием теплоты сварочной дуги происходит оплавление конца электрода и плавление основного металла (рис. 5.14, а). Оплавившийся слой электродного металла принимает форму капли с образованием у ее основания шейки (рис. 5.14, б). Поперечное сечение шейки с течением времени уменьшается. Это приводит к значительному увеличению плотности тока у шейки, вследствие чего капля под действием электродинамических сил отрывается от электрода и происходит ее перенос через дугу (рис. 5.14, в), а затем идет взаимодействие капли со сварочной ванной (рис. 5.14, г).

Характер плавления и переноса электродного металла оказывает большое влияние на производительность сварки, ход металлургических процессов. От него зависят устойчивость горения дуги, потери металла, формирование шва и др.

Стадии процесса плавления электрода и основного металла

Рис. 5.14. Стадии процесса плавления электрода и основного металла

Капли расплавленного металла переходят с электрода в сварочную ванну при горении сварочной дуги во всех пространственных положениях (горизонтальное, вертикальное, потолочное). За 1 с от электрода отрываются и переходят на изделие несколько капель расплавленного металла. При больших плотностях тока за 1 с может образоваться несколько десятков капель.

Формирование и перенос капель осуществляется под воздействием силы тяжести, сил поверхностного натяжения, давления газов, образующихся внутри расплавленного металла, давления газового потока, электростатических и электродинамических сил, реактивного давления паров металла. В зависимости от соотношения сил, действующих на каплю, различают следующие виды переноса электродного металла (рис. 5.15):

  • крупнокапелъный с коротким замыканием дуги (характерен для ручной дуговой сварки покрытыми электродами с основным покрытием): диаметр капли dK больше диаметра электрода d3;
  • среднекапельный (характерен для ручной дуговой сварки покрытыми электродами с рутиловым и кислым покрытием): dK = d3;
  • мелкокапельный (характерен для ручной дуговой сварки покрытыми электродами с целлюлозным покрытием, а также наблюдается при сварке под флюсом и в защитных газах - аргоне, углекислом газе и др.): dK < d3;
Виды переноса электродного металла

Рис. 5.15. Виды переноса электродного металла:

а - крупнокапельный с коротким замыканием дуги; б - среднекапельный; в - мелкокапельный

струйный (имеет место при сварке в аргоне большими токами).

Мелкокапельный и струйный переносы электродного металла обеспечивают более устойчивый процесс сварки и лучшее формирование шва.

Разбрызгивание электродного металла при сварке обусловлено главным образом электрическим взрывом перемычки между отделяющейся каплей и концом электрода под действием электромагнитных сил.

Сварку производят дугой переменного и постоянного тока. При сварке дугой переменного тока промышленной частоты (50 периодов в секунду) катодное и анодное пятна меняются местами 100 раз в секунду. В начале и конце каждого периода дуга угасает. Поэтому дуга, питаемая переменным током, горит менее устойчиво, чем дуга, питаемая постоянным током.

При сварке переменным током полярность меняется 100 раз в секунду, поэтому безразлично, к какому зажиму сварочного трансформатора присоединены изделие и электрод.

 27 ноября 2020

 Группа 303

Предмет:"Основы технологии сварки и сварочное оборудование"

Тема урока:"Режимы плазменной сварки и при1 Принцип действия плазменной сварки 2 Виды и режимы плазменной сварки 3 Технология и суть плазменной сварки 4 Оборудование для плазменной сварки 5 Плазмотрон – своими руками: при некоторой сноровке и минимальных знаниях несложно 6 Пример сборки установки для резки и сварки крупных деталей Метод применяется для качественного соединения не только тонких заготовок, но и толщиной от 8 мм, так как происходит полное проплавление изделия. Сплавляет нержавеющие, тугоплавкие, цветные металлы и неметаллические материалы. Принцип действия плазменной сварки Плавление происходит под воздействием плазменной дуги. Существует два её вида: Прямого действия – катодом служит вольфрамовый электрод, находящийся внутри горелки, анодом – изделие. Процесс называют плазменно-дуговым: струя совмещена со столбом дугового разряда. Косвенного действия – активные пятна, анодное и катодное, расположены на электроде и поверхности сопла плазмотрона. Сила и направленность потока зависят от давления газа, созданного системой и внутренним давлением сопла. КПД дуги прямого действия на 15-30% выше, чем косвенного, что обуславливает более частое применение. Виды и режимы плазменной сварки По мощности сварочного тока виды технологии различают: на микроплазменную – производится на малых, от 0,1 до 25 ампер, токах, эффективно для изделий небольшой, до 1,5 мм, толщины; на средних, от 50 до 150 А, токах – обеспечивает большее проплавление при меньшей толщине шва; на больших, от 150 А, токах – происходит сквозное проплавление металла. В зависимости от используемого оборудования различают способы соединения поверхностей: Ручной – для небольших объёмов производства. Сопло и присадочная проволока подаются в область соединения вручную. Автоматический – для промышленных объёмов. Применяются аппараты для однопроходной и многопроходной сварки, труб и плоских изделий. С основными режимами плазменной сварки можно ознакомиться в таблице по ссылке. Технология и суть плазменной сварки На свариваемые поверхности из горелки-плазмотрона подают струю плазмы – ионизированного газа. Кроме плазменного, в зону соединения поступает защитный газ. В расплавленные края деталей вводится присадочный материал – лента или пруток. Из-за того, что область сварочной ванны под защитной газовой средой, шов получается качественным и ровным. При этом способе как нагревание, так и остывание металла происходит быстро. Быстрое охлаждение негативно влияет на качество шва. Чтобы избежать этого, деталь некоторое время греют: температура опускается постепенно. Схема плазменной сварки Оборудование для плазменной сварки В комплект входят: источник питания дуги с вертикальной вольт-характеристикой; система подачи газа и охлаждения горелки; горелка-плазмотрон; устройство перемещения и фиксации деталей. Рабочее место оборудуют приточно-вытяжной вентиляцией. Цены на установки – от 15 тысяч рублей для ручной, до 500 – для автоматической сварки. Аппараты для мелких работ собирают самостоятельно. Примерная стоимость аппаратов для плазменной сварки на Яндекс.маркет Плазмотрон – своими руками: при некоторой сноровке и минимальных знаниях несложно Для сварочных работ с домашней техникой делают простую установку. Чтобы получить электрическую дугу, достаточно понижающего трансформатора на 30-50 V, мощностью 200-300 Вт. Держатели электродов делают из электротехнических клемников и карандаша. Древесину прорезают канцелярским ножом в нескольких местах по окружности, затем аккуратно вынимают грифель.

Источник: https://elsvarkin.ru/texnologiya/plazmennaya-svarka/нципы  их выбора"

среда, 25 ноября 2020 г.

25 ноября 2020

Группа 312

Предмет:"Техника и технология сварки покрытым электродом"

Тема занятия :"Плазменная сварка 

Плазменная резка и сварка металла

Для сварки конструкций, изготовленных из нержавеющих сталей, цветных сплавов и разнородных металлов, а также при сварке металлов с неметаллами, толщиной до 15 мм используют особый вид сварки – плазменную.

Содержание

Этот вид сварки осуществляется с помощью высокотемпературной плазменной дуги (до 50000 0С), которая получается с помощью специального оборудования, позволяющего получать плазменную струю или дугу. Кроме того, плазменную струю используют для резки, пайки, напыления и наплавки многих цветных и тугоплавких металлов. Известно, что плазма это газ, который нагрет до состояния ионизации и проводимости электрического тока.

плазменная сварка

Плазменная сварка используется в авиационной, космической, машиностроительной, автомобилестроительной, электротехнической, пищевой промышленности и других отраслях народного хозяйства, где к конструкциям предъявляются высокие требования к качеству их изготовления.

Сущность сварки – тепло принудительно сжатой электрической дуги расплавляет кромки деталей и формирует сварочный шов. Сварка может осуществляться в ручном или автоматическом режимах. Вне зависимости от режима выполнения, швы получаются высокого качества и с заданными геометрическими размерами, при этом конструкции не претерпевают деформаций.

Преимущества и недостатки плазменной сварки

К преимуществам сварки относят:

  • высокую концентрацию тепла при минимальной зоне теплового воздействия, что исключает в процессе сварки коробление деталей, а значит и отпадает необходимость в их правке;
  • стабильность горения дуги;
  • высокую скорость сварки (до 50 м/час), что позволяет повысить производительность труда;
  • проплавление металла на всю глубину, что позволяет перед сваркой не осуществлять разделку кромок;
  • широкие пределы регулирования сварочной дуги;
  • отсутствие разбрызгивания металла в процессе проведения работ;
  • экономичность;
  • высокое качество полученного сварного соединения;
  • возможность полной автоматизации сварочного процесса.

К недостаткам относят:

  • сложность обслуживания некоторых видов оборудования;
  • необходимость соблюдать технику безопасности.

Устройство аппарата плазменной сварки

Плазменный сварочный аппарат состоит из специальной горелки (плазмотрона) и источника питания.

Плазмотрон состоит из следующих основных частей:

  • кожуха наружного;
  • корпуса фторопластового;
  • узла электродного;
  • механизма регулирования воздушного потока;
  • втулки изоляционной;
  • электрода;
  • втулки изоляционной;
  • сопла;
  • гайки сопла.

В конструкции предусмотрены подводы для газов (плазмообразующего и защитного) и подвод водяного или воздушного охлаждения. Плазмообразующим газом служит чистый аргон или аргон с добавками водорода или гелия, а также может использоваться воздух, азот, водород или смеси газов. Защитным газом служит чаще всего аргон. Электроды изготавливаются из вольфрама, активированного торием, лантаном или иттрием, а также изготовленные из гафния и меди. Подача воды или воздуха необходима для охлаждения стенок сопла.

Газовый поток, проходя сквозь сопло, ограничивает размеры дуги и оттесняет дугу от стенок сопла. Таким образом, изолируется слой газа от сопла. Дуговой разряд, который может возникать между электродом и свариваемым изделием (сварка дугой прямого действия) или между электродом и соплом (сварка дугой косвенного действия) проходит в центральную часть отверстия, находящегося в сопле.

 

понедельник, 23 ноября 2020 г.

24 ноября 2020 года

Групп 203

Предмет:"Техника и технология ручной дуговой сварки в среде защитных газов"

Тема урока :"Плазмотроны и горелки для плазмен

ГОРЕЛКИ ПЛАЗМЕННЫЕ — КАКИЕ БЫВАЮТ, КАК УСТРОЕНЫ, РАБОТАЮТ, ЧТО НУЖНО ЗНАТЬ

Плазменный тип сварки широко используется при работе с тугоплавкими разновидностями металлов. Для ее проведения используются специальные плазменные аппараты. Они же нуждаются в плазменных горелках, с чьей помощью осуществляется процесс сварки. Рассмотрим основной принцип работы горелки, ее устройство и особенности.

ПЛАЗМЕННАЯ ГОРЕЛКА: КАК ОНА УСТРОЕНА

Плазменный резак, он же одноименная горелка или плазмотрон, состоящий из нескольких элементов, от качества которых будет определяться уровень производительности изделия. Сюда включаются:

Плюс имеются головка резака, роликовый упор и рукоятка.

Важно! Параметры сопла определяют величину разреза и скорость, с которой охлаждается обработанный участок.

ВИДЕО

Посмотрите ролик, где популярно объясняется устройство и работа горелки:

КАКИЕ БЫВАЮТ ГОРЕЛКИ ДЛЯ ПЛАЗМЕННОЙ СВАРКИ

Различают два основных вида изделий:

  • Пистолет плазменно-водяной сварки с разрядной камерой и специальным парообразующим устройством, соединенными вместе.
  • Резак, состоящий из ручки, головки, мундштука и клапанов, через которые подается вода, водород и т. д. Имеет более вытянутую форму.

ГОРЕЛКА ДЛЯ РУЧНОЙ ПЛАЗМЕННОЙ СВАРКИ

Для ручной плазменной сварки обычно используется устройство в виде пистолета, которое удобно держать в руках. В чем его отличия от автоматического типа изделия:

  • возможна работа в труднодоступных местах;
  • защитное сопло горелки изолировано, что увеличивает удобство и безопасность — нет замыкания плазмотрона на изделии;
  • более объемные по сравнению с автоматическими аналогами.

ПЛАЗМЕННАЯ ГОРЕЛКА СВОИМИ РУКАМИ: РЕАЛЬНО ЛИ СДЕЛАТЬ?

При наличии необходимых навыков любой человек, которому необходима плазменная горелка, сможет сделать ее своими руками. Но основная особенность в том, что практически все материалы потребуется приобретать у заводских производителей. Это ручка, сопло и подводящие элементы.

Итогом станет обычная сборка плазматрона из готовых деталей. Однако, даже такое устройство, собранное собственноручно, выйдет гораздо дешевле готового устройства. С наценкой продавца и оплатой сборки, включенной в стоимость изделия, потребуется потратить в разы больше средств.

Советуем ознакомиться с материалом про изготовление горелки своими руками на нашем сайте.

Внимание! Быстрее всего изнашивается сопло, поэтому его крайне нежелательно делать самому.

[ads-pc-1]

ГОРЕЛКА ГОРЫНЫЧ

Фото с сайта производителя as-pp.ru/gorynych

Этот элемент одноименного сварочного устройства представляет собой пистолет, подключающийся к блоку питания соединительным шнуром с разъемом. В ее конструкцию входят:

  • сопло;
  • кнопка «пуск»;
  • аккумулятор;
  • горловина для заправки рабочей жидкости;
  • испаритель;
  • поворотная ручка;
  • влаго-впитывающие кольца.

Корпус горелки выполнен из металла и содержит аккумулятор внутри. Последний изготовлен из нержавеющей стали высокого качества. Внутри имеется материал, впитывающий влагу — кварцевые дисперсионные волокна. Само изделие помещается в корпус из крепкого пластика.

В пользу данного устройства говорят следующие особенности:

  • Материал при обработке не деформируется и, следовательно, не усаживается так сильно, как на других обычных сварочных устройствах.
  • Высокое качество шва и создание оксидной пленки в месте работы.

ГДЕ КУПИТЬ

Если вы желаете покупать не через интернет, найдите продавцов поближе к вам в разделе нашего сайта: продавцы комплектующих.

К записи "Горелки плазменные — какие бывают, как устроены, работают, что нужно знать" 4 отзыва (ов).
  1. МИХАЛЫЧ:

    Здравствуйте, коллеги!
    Второй год наше предприятие активно использует станок плазменной резки с ЧПУ. Купили в (не скажу где, неподалёку) консольный плазмотрон с направляющей и блоком управления. Остальное (раму, стол) изготовили сами, по чертежам, которые дал дилер. Никакого фундамента, выставлен по лазерному уровню на бетонном полу цеха.
    Хочу отметить, что никаких специальных газов (кислород, водяной пар) плазморез не требует. Сжатый воздух, 4…10 кгс/см2, подается в горелку (через блок управления, разумеется) от винтового компрессора с фильтром, водоотделителем и ресивером 0,1 м3, которые покупали отдельно. Через полгода прикупили ручной плазморез, с кабель-шлангом длиной 20 м, подсоединяется к блоку. Плазменное оборудование – не Hipertherm, программное обеспечение ЧПУ требует только «автокад», ничего лишнего.
    Самодельный стол позволяет разместить лист-заготовку 1500х6000. Режем до 50 мм с краю, до 38 на пробой. Точность реза около 0,5 мм, что более чем удовлетворительно при изготовлении ферм, колонн и подкрановых балок.
    Гильотина и пресс-ножницы давно покрылись пылью, никто к ним уже и не подходит. Ручные газо-кислородные резаки и «радугу» убрали в кладовку. Плазменный станок и ручной плазморез полностью закрыли все проблемы.
    Неудобство одно – расход мундштуков и сопел, при интенсивной работе, может достигать комплекта в смену. Покупать у дилера дороговато, у нас договор с соседним машиностроительным предприятием.
    С уважением.

ной сварки и резки" 

24 ноября 2020

Группа 311

Предмет:" устройство, техническое обслуживание и ремонт автомобиля"

Тема урока:"Типы тормозных систем"Назначение и типы тормозных систем автомобиля.

Тормозная система автомобиля служит для снижения его скорости или полной остановки.

По назначению выделяют следующие типы тормозных систем: рабочую, резервную и стояночную.

1. Рабочая (основная) тормозная система предназначена для снижения скорости движения автомобиля и для его остановки. Часть системы, которая переносит усилие с педали тормоза на тормозные колодки, называют тормозным приводом.

а. Механический привод осуществляется при помощи тросов и рычагов: механический, пневматический, гидравлический и комбинированный. Из-за его малой эффективности и неудобства обслуживания в современном автомобилестроении практически не используется. Существуют различные виды тормозных приводов.

б. Пневматический привод в своей работе использует разрежение воздуха. В настоящее время распространен на грузовиках и автобусах.

в. Гидравлический привод приводится в действие благодаря жидкости на основе спирта, гликоля или силикона. Распространен повсеместно.

д. Комбинированный привод использует несколько типов энергоносителей и, ввиду своей сложности, не применяется без крайней необходимости.

2. Резервная (запасная) тормозная система включается при неисправности рабочей системы. В современном автомобилестроении, как правило, выполнена не автономно, а в составе одной из частей рабочей системы.

3. Стояночная тормозная система, в первую очередь, служит для предотвращения нежелательного самопроизвольного движения автомобиля во время стоянки.

Кроме того, ее используют для облегчения трогания в гору, при длительной остановке в «пробке», для ухода в управляемый занос или при полном отказе рабочей тормозной системы.

Эта система может быть реализована механическим способом (тросы к задним колесам или к трансмиссии) или посредством гидравлики.


История развития тормозных механизмов.

Самый примитивный тормозной механизм, использовавшийся в гужевых повозках,представлял собой деревянную колодку, затормаживающую непосредственно рабочую поверхность колеса.

Эта колодка приводилась в рабочее положение ручным рычагом.

Этот механизм посредством колодок воздействовал на металлический обод колеса и приводился в действие тросами. Ближайший современный аналог — это тормозные механизмы велосипедов.С распространением резиновых шин данный способ торможения стал абсолютно неэффективным, что привело к появлению клещевого колодочного тормоза.

Параллельно с колодочным тормозом появился ленточный механизм.

Гибкая металлическая лента охватывала тормозной барабан. При торможении, посредством рычагов, лента натягивалась, что приводило к затормаживанию колес. Данная система довольно долго использовалась еще и в качестве стояночного тормоза.

В 1910-20-х годах стали появляться барабанные тормоза, которые по своему принципу работы соответствуют современным. Однако, за это время существенно изменились тормозные приводы, пройдя свой путь от раздельного механического до совмещенного гидравлического. Впервые гидравлическая система была применена в 1921 году Малкольмом Локхидом.

Примерно в конце 1920-х конструкторы начали реализовывать системы, снижающие усилие на педаль тормоза. Ввиду сложности конструкции, усилители тормозов использовались только на автомобилях класса люкс.

Их широкое распространение пришлось на 1950-е годы. Этому развитию послужило увеличение скоростных характеристик и динамических качеств автомобилей.

В конце 1950-х начали серийно устанавливать дисковые тормоза. В данной системе колодки прижимаются не к внутренней поверхности барабана, а к наружным плоскостям диска. Этот тормоз конструктивно проще барабанного, обладает лучшей эффективностью, меньшей массой, и он проще в обслуживании. В усовершенствованном виде такие тормоза используются до сих пор.


Гидравлическая тормозная система.

Получила распространение в 1930-е годы, как альтернатива механическим тормозам. Системы того времени отличались простотой своей конструкции. В тормозном приводе использовались: главный тормозной цилиндр, тормозные трубки и 2 рабочих цилиндра (по одному на каждое заднее колесо). В качестве жидкости использовалось растительное масло. Совершенствование данной системы проходило сразу в нескольких направлениях. Улучшение качества энергоносителя — переход от жидкости на основе растительного масла к жидкости на основе спирта и глицерина, а затем к гликолевым и силиконовым жидкостям. Следующее улучшение — практически повсеместное появление усилителя тормозов — сначала гидро-вакуумного, затем вакуумного. И самое важное нововведение — появление двухконтурной тормозной системы. Дело в том, что при потере герметичности любого из элементов одноконтурной системы, тормоза полностью теряли свою работоспособность. Если же сломается какой-либо элемент двухконтурной системы, то в качестве резервной тормозной системы продолжит работать один из контуров.


Двухконтурная гидравлическая тормозная система.

Существует несколько основных способов разделить тормозную систему на контуры: поосевой, диагональный и полный. Рассмотрим каждый подробнее.

1. Поосевая система — один контур на передние колеса, второй контур — на задние. Это наиболее простой способ, часто применяемый на автомобилях классической компоновки, например, ВАЗовская «классика». К его достоинствам можно отнести отсутствие увода в сторону при торможении с одним рабочим контуром. Однако, есть важный недостаток — при обрыве переднего контура эффективность торможения значительно падает (примерно на 65%).

2. Диагональная система — один контур на переднее левое и заднее правое колеса, второй контур — на переднее правое и заднее левое. К положительным сторонам этого способа можно отнести равномерное распределение нагрузки между контурами. То есть, не зависимо от того, какой контур выйдет из строя, эффективность торможения упадет ровно на 50%.

Главный недостаток — увод от прямолинейного движения при торможении после обрыва одного из контуров. Это связано с тем, что эффективность работы передних тормозных механизмов значительно выше, чем в задних. Данный тип разделения применим в большинстве современных автомобилей.

3. Полная система — значительно сложнее двух предыдущих. Один из контуров работает на все 4 колеса, второй контур — только на передние. При этом, передние тормозные механизмы имеют минимум по 2 полностью независимых цилиндра. Система нашла свое применение на автомобилях Москвич, Волга, Нива.

Выше говорилось, что эффективность передних тормозов легковых автомобилей значительно выше, чем в задних. Поскольку при торможении автомобиля центр тяжести смещается вперед, нагрузка на переднюю ось возрастает, а на заднюю ось — уменьшается. Соответственно задние колеса имеют худшее сцепление с дорогой, чем передние и при большом тормозном усилии могут сорваться в юз. Это особенно опасно на скользкой дороге или при торможении во время прохождения поворота.

Один из самых простых способов борьбы с этой проблемой — применение на задней оси автомобиля тормозных систем со сниженной эффективностью. Например, на переднюю ось устанавливаются тормозные диски на 14 дюймов, а на заднюю — на 12. Более надежный способ — применение регулятора тормозных усилий. Впервые в отечественном автомобилестроении данный элемент применен на Жигулях ВАЗ-2101. Принцип его работы был не совсем понятен рядовым автолюбителям, поэтому его в народе прозвали «колдун». Регулятор имеет в своей конструкции клапан, частично перекрывающий тормозную жидкость и снижающий ее давление. Регулятор обычно закрепляют под днищем автомобиля, а от клапана ведут тягу к задней балке. При торможении автомобиля его задняя подвеска разгружается, увеличивается расстояние между днищем и балкой, а тяга перекрывает клапан, снижая тормозное усилие. Существуют регуляторы, снижающие усилие постоянно, не зависимо от загруженности подвески. Такие регуляторы ранее применялись на ВАЗ-1111; в настоящее время нашли применение на корейских автомобилях эконом-класса.


Стояночная тормозная система.

На большинстве современных легковых автомобилей применяют механический стояночный тормоз, представляющий собой рычаг и систему тросов.

Если задние тормоза барабанные, то тросы присоединяются к распоркам колодок. При наличии на задней оси дисковых механизмов, осуществить механический способ подключения стояночной тормозной системы сложно, поэтому часто применяют отдельные барабанные стояночные механизмы.

В автоспорте нашел применение гидравлический тормозной привод. При его применении давление жидкости передается на задний контур поосевой тормозной системы или на задние магистрали диагональной системы (причем, в обход регулятора тормозных усилий). Гидравлический привод обладает большей эффективностью, чем механический, и позволяет точно дозировать усилие. Поэтому его используют для увода автомобиля в управляемый занос. Однако, эта система не подходит для повседневного использования, так как не позволяет оставить машину на длительной стоянке. Дело в том, что давление в системе постепенно снижается и колодки отпускаются.


Проверка технического состояния тормозных систем.

Для проверки стояночной системы в «гаражных» условиях рычаг затягивают до упора, включают первую передачу и плавно отпускают сцепление. Если система работает, то двигатель заглохнет.

Проверка рабочей тормозной системы в «домашних» условиях малоэффективна. Ее начинают с осмотра. Оценивают уровень тормозной жидкости в бачке, проверяют систему на отсутствие подтеков жидкости. При нажатии педали тормоза во время движения, должны блокироваться все колеса. При этом автомобиль не должно вести в сторону, недопустимы вибрации педали тормоза и ее провалы, срабатывание тормоза не с первого «качка», появление посторонних скрипов и увеличение тормозного пути.

Для более точной диагностики необходимо обращаться в сервисный центр. Полную проверку необходимо проводить не реже, чем через каждые 50000 км.

 

 04.06.2021 года Группа 311 Предмет :"Устройство, техническое обслуживание и ремонт автомобилей" Экзаменационный материал для сдач...