Группа 108
Трогонометрические уравнения, приемы их решенияВ данной статье мы расскажем об основных типах тригонометрических уравнений и методах их решения. Эта тема — одна из самых сложных для абитуриентов. Тригонометрические уравнения встречаются в части С вариантов ЕГЭ, а также в заданиях вступительных экзаменов в ВУЗы.
Некоторые из методов (например, замена переменной или разложение на множители) являются универсальными, то есть применяются и в других разделах математики. Другие являются специфическими именно для тригонометрии, и о них, как правило, рассказывает абитуриенту репетитор.
Необходимых формул по тригонометрии не так уж и много. Их нужно знать наизусть.
Любой метод решения тригонометрических уравнений состоит в том, чтобы привести их к простейшим, то есть к уравнениям вида sin x = a, cos x = a, tg x = a, ctg x = a. Простейшие тригонометрические уравнения мы уже умеем решать. Теперь — сами методы.
Замена переменной и сведение к квадратному уравнению
Это универсальный способ. Применяется в любых уравнениях — степенных, показательных, тригонометрических, логарифмических, каких угодно. Замена не всегда видна сразу, и уравнение нужно сначала преобразовать.
1. Рассмотрим уравнение
Преобразуем его, применив основное тригонометрическое тождество:
Заменяя sin x на t, приходим к квадратному уравнению:
Решая его, получим:
Теперь вспоминаем, что мы обозначили за t. Первый корень приводит нас к уравнению . Оно не имеет решений, поскольку
Второй корень даёт простейшее уравнение Решаем его: Это и есть ответ.
2. Решить уравнение
Здесь нужно применить формулу косинуса двойного угла. Какую именно? Судя по уравнению — ясно, что ту, которая с косинусом!
Теперь замена и. . . дальше вы знаете.
3. Бывает, что оба рассмотренных выше метода нужно комбинировать. Например:
Здесь всё подчиняется синусу. Именно через него выражаем косинус двойного угла, а выражаем из основного тригонометрического тождества:
Дальше понятно.
Разложение на множители
Очень хорошо, если уравнение удаётся представить в таком виде, что в левой части стоит произведение двух или нескольких множителей, а в правой части — ноль. Произведение двух или нескольких множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю. Сложное уравнение, таким образом, распадается в совокупность более простых.
1. Начнём с уравнения
Применяем формулу синуса двойного угла:
Ни в коем случае не сокращайте на косинус! Ведь может случиться, что cos x обратится в нуль, и мы потеряем целую серию решений. Переносим всё в одну часть, и общий множитель — за скобки:
Полученное уравнение равносильно совокупности двух уравнений: и
Решаем каждое из них и берём объединение множества решений.
Ответ:
2. Рассмотрим уравнение
Применим формулу суммы синусов:
Дальше действуем так же, как и в предыдущей задаче:
Решаем уравнение :
(1) |
Решаем уравнение :
(2) |
Ну что, перечисляем обе серии (1) и (2) в ответе через запятую? Нет! Серия (2) является в данном случае частью серии (1). Действительно, если в формуле (1) число n кратно 5, то мы получаем все решения серии (2).
Поэтому ответ:
3. Бывает, что перед разложением суммы или разности тригонометрических функций в произведение надо проделать обратную процедуру: превратить произведение в сумму (разность).
Решим уравнение:
Домножаем обе части на 2, преобразуем левую часть в разность косинусов, а правую часть — в сумму косинусов:
Ответ:
4. Ещё пример, где финальное разложение на множители поначалу замаскировано:
Здесь используем формулу понижения степени:
(которая является ни чем иным, как переписанной в другом виде формулой косинуса двойного
угла). Получаем:
и дальше ясно.
5. Многие оказываются в ступоре при виде следующего уравнения:
Переносим косинус влево и применяем формулу приведения
Дальше — дело техники.
6. А в этом примере нужны совсем другие манипуляции:
Раскладываем синус двойного угла, всё собираем в левой части и группируем:
Цель достигнута.
Однородные уравнения
Рассмотрим уравнение:
Степень каждого слагаемого в левой части равна двум. Точно так же, как в обычном многочлене
степень каждого слагаемого равна двум (степень одночлена — это сумма степеней входящих в него сомножителей).
Поскольку степени всех слагаемых одинаковы, такое уравнение называют однородным. Для однородных уравнений существует стандартный приём решения — деление обеих его частей на . Возможность этого деления, однако, должна быть обоснована: а что, если косинус равен нулю?
Следующий абзац предлагаем выучить наизусть и всегда прописывать его при решении однородных уравнений.
Предположим, что . Тогда в силу уравнения и , что противоречит основному тригонометрическому тождеству. Следовательно, любое решение данного уравнения удовлетворяет условию , и мы можем поделить обе его части на .
В результате деления приходим к равносильному квадратному уравнению относительно тангенса:
и дальнейший ход решения трудностей не представляет
1. Рассмотрим уравнение
Если бы в правой части стоял нуль, уравнение было бы однородным. Мы поправим ситуацию изящным приёмом: заменим число 3 на выражение :
и дело сделано.
2. Неожиданным образом сводится к однородному следующее уравнение:
Казалось бы, где тут однородность? Переходим к половинному углу!
откуда
(3) |
Мы не случайно довели это уравнение до ответа. В следующем разделе оно будет решено другим методом, и ответ окажется внешне непохожим на этот.
Введение дополнительного угла
Этот метод применяется для уравнений вида . Он присутствует в школьных учебниках. Правда, в них рассматриваются только частные случаи — когда числа a и b являются значениями синуса и косинуса углов в 30°, 45° или 60°.
1. Рассмотрим уравнение
Делим обе части на 2:
Замечаем, что :
В левой части получили синус суммы:
,
откуда и
2. Другой пример:
Делим обе части на
Сделаем теперь для разнообразия в левой части косинус разности:
3. Рассмотрим теперь общий случай — уравнение
Делим обе части на :
(4) |
Для чего мы выполнили это деление? Всё дело в получившихся коэффициентах при косинусе и синусе. Легко видеть, что сумма их квадратов равна единице:
Это означает, что данные коэффициенты сами являются косинусом и синусом некоторого угла :
Соотношение (4) тогда приобретает вид:
,
или
Исходное уравнение сведено к простейшему. Теперь понятно, почему рассматриваемый метод называется введением дополнительного угла. Этим дополнительным углом как раз и является угол .
4. Снова решим уравнение
Делим обе части на :
Существует угол такой, что . Например, . Получаем:
,
,
,
,
В предыдущем разделе мы решили это уравнение, сведя его к однородному, и получили в качестве ответа выражение (3). Сравните с полученным только что выражением. А ведь это одно и то же множество решений!
Универсальная подстановка
Запомним две важные формулы:
Их ценность в том, что они позволяют выразить синус и косинус через одну и ту же функцию — тангенс половинного угла. Именно поэтому они получили название универсальной подстановки. Единственная неприятность, о которой не надо забывать: правые части этих формул не определены при . Поэтому если применение универсальной подстановки приводит к сужению ОДЗ, то данную серию нужно проверить непосредственно.
1. Решим уравнение
Выражаем , используя универсальную подстановку:
Делаем замену :
Получаем кубическое уравнение:
Оно имеет единственный корень . Стало быть, , откуда .
Сужения ОДЗ в данном случае не было, так как уравнение с самого начала содержало .
2. Рассмотрим уравнение
А вот здесь использование универсальной подстановки сужает ОДЗ. Поэтому сначала непосредственно подставляем в уравнение и убеждаемся, что это — решение.
Теперь обозначаем и применяем универсальную подстановку:
После простых алгебраических преобразований приходим к уравнению:
Следовательно, и .
Ответ: .
Метод оценок
В некоторых уравнениях на помощь приходят оценки .
3. Рассмотрим уравнение
Так как оба синуса не превосходят единицы, данное равенство может быть выполнено лишь в
том случае, когда они равны единице одновременно:
Таким образом, должны одновременно выполняться следующие равенства:
Обратите внимание, что сейчас речь идёт о пересечении множества решений (а не об их объединении, как это было в случае разложения на множители). Нам ещё предстоит понять, какие значения x удовлетворяют обоим равенствам. Имеем:
Умножаем обе части на 90 и сокращаем на π:
Правая часть, как видим, должна делиться на 5. Число n при делении на 5 может давать остатки от 0 до 4; иначе говоря, число n может иметь один из следующих пяти видов: 5n, 5m + 1, 5m + 2, 5m + 3 и 5m + 4, где. Для того, чтобы 9n+ 1 делилось на 5, годится лишь n = 5m + 1.
Искать k, в принципе, уже не нужно. Сразу находим x:
Ответ: .
4. Рассмотрим уравнение
Ясно, что данное равенство может выполняться лишь в двух случаях: когда оба синуса одновременно равны 1 или −1. Действуя так, мы должны были бы поочерёдно рассмотреть две системы уравнений.
Лучше поступить по-другому: умножим обе части на 2 и преобразуем левую часть в разность косинусов:
Тем самым мы сокращаем работу вдвое, получая лишь одну систему:
Имеем:
Ищем пересечение:
Умножаем на 21 и сокращаем на π:
Данное равенство невозможно, так как в левой части стоит чётное число, а в правой — нечётное.
Ответ: решений нет.
5. Страшное с виду уравнение
также решается методом оценок. В самом деле, из неравенств следует, что . Следовательно, , причём равенство возможно в том и только в том случае, когда
Остаётся решить полученную систему. Это не сложно.
Учёт тригонометрических неравенств
Рассмотрим уравнение:
Перепишем его в виде, пригодном для возведения в квадрат:
Тогда наше уравнение равносильно системе:
Решаем уравнение системы:
,
,
Второе уравнение данной совокупности не имеет решений, а первое даёт две серии:
Теперь нужно произвести отбор решений в соответствии с неравенством . Серия не удовлетворяет этому неравенству, а серия удовлетворяет ему. Следовательно, решением исходного уравнения служит только серия .
Ответ: .
Специальные приёмы
В этом разделе рассматриваются некоторые типы уравнений, приёмы решения которых нужно знать обязательно.
1. Рассмотрим уравнение
Это сравнительно редкий случай, когда используется исходная формула косинуса двойного угла:
,
,
,
Каждое из уравнений полученной совокупности мы решать умеем.
2. Теперь рассмотрим такое уравнение:
Метод решения будет совсем другим. Сделаем замену . Как выразить через t? Имеем:
,
откуда . Получаем:
,
,
,
Как действовать дальше, мы знаем.
3. Надо обязательно помнить формулы косинуса и синуса тройного угла (чтобы не изобретать их на экзамене):
,
Вот, например, уравнение:
Оно сводится к уравнению относительно :
,
,
Дальше всё понятно.
4. Как бороться с суммой четвёртых степеней синуса и косинуса? Рассмотрим уравнение
Выделяем полный квадрат!
,
,
,
,
,
,
5. А как быть с суммой шестых степеней? Рассмотрим такое уравнение:
Раскладываем левую часть на множители как сумму кубов: .
Получим:
,
С суммой четвёртых степеней вы уже умеете обращаться.
Комментариев нет:
Отправить комментарий