среда, 16 декабря 2020 г.

16 декабря 2020

Группа 312

Предмет :"Техника и технология ручной дуговой варки в среде инертных газов"

Тема урока:"Выполнен

Плазменная резка и сварка металла

Для сварки конструкций, изготовленных из нержавеющих сталей, цветных сплавов и разнородных металлов, а также при сварке металлов с неметаллами, толщиной до 15 мм используют особый вид сварки – плазменную.

Содержание

Этот вид сварки осуществляется с помощью высокотемпературной плазменной дуги (до 50000 0С), которая получается с помощью специального оборудования, позволяющего получать плазменную струю или дугу. Кроме того, плазменную струю используют для резки, пайки, напыления и наплавки многих цветных и тугоплавких металлов. Известно, что плазма это газ, который нагрет до состояния ионизации и проводимости электрического тока.

плазменная сварка

Плазменная сварка используется в авиационной, космической, машиностроительной, автомобилестроительной, электротехнической, пищевой промышленности и других отраслях народного хозяйства, где к конструкциям предъявляются высокие требования к качеству их изготовления.

Сущность сварки – тепло принудительно сжатой электрической дуги расплавляет кромки деталей и формирует сварочный шов. Сварка может осуществляться в ручном или автоматическом режимах. Вне зависимости от режима выполнения, швы получаются высокого качества и с заданными геометрическими размерами, при этом конструкции не претерпевают деформаций.

Преимущества и недостатки плазменной сварки

К преимуществам сварки относят:

  • высокую концентрацию тепла при минимальной зоне теплового воздействия, что исключает в процессе сварки коробление деталей, а значит и отпадает необходимость в их правке;
  • стабильность горения дуги;
  • высокую скорость сварки (до 50 м/час), что позволяет повысить производительность труда;
  • проплавление металла на всю глубину, что позволяет перед сваркой не осуществлять разделку кромок;
  • широкие пределы регулирования сварочной дуги;
  • отсутствие разбрызгивания металла в процессе проведения работ;
  • экономичность;
  • высокое качество полученного сварного соединения;
  • возможность полной автоматизации сварочного процесса.

К недостаткам относят:

  • сложность обслуживания некоторых видов оборудования;
  • необходимость соблюдать технику безопасности.

Устройство аппарата плазменной сварки

Плазменный сварочный аппарат состоит из специальной горелки (плазмотрона) и источника питания.

Плазмотрон состоит из следующих основных частей:

  • кожуха наружного;
  • корпуса фторопластового;
  • узла электродного;
  • механизма регулирования воздушного потока;
  • втулки изоляционной;
  • электрода;
  • втулки изоляционной;
  • сопла;
  • гайки сопла.

В конструкции предусмотрены подводы для газов (плазмообразующего и защитного) и подвод водяного или воздушного охлаждения. Плазмообразующим газом служит чистый аргон или аргон с добавками водорода или гелия, а также может использоваться воздух, азот, водород или смеси газов. Защитным газом служит чаще всего аргон. Электроды изготавливаются из вольфрама, активированного торием, лантаном или иттрием, а также изготовленные из гафния и меди. Подача воды или воздуха необходима для охлаждения стенок сопла.

Газовый поток, проходя сквозь сопло, ограничивает размеры дуги и оттесняет дугу от стенок сопла. Таким образом, изолируется слой газа от сопла. Дуговой разряд, который может возникать между электродом и свариваемым изделием (сварка дугой прямого действия) или между электродом и соплом (сварка дугой косвенного действия) проходит в центральную часть отверстия, находящегося в сопле.

Принцип работы аппарата плазменной сварки заключается в следующем -осциллятор (генератор высокого напряжения) создает электрический потенциал, который необходим для возникновения искрового разряда и поджигания электрической дуги. Возникает дежурная дуга, которая при соприкосновении со свариваемым изделием замыкается на нем и, таким образом, переходит в рабочий режим. Поток закрученного по спирали плазмообразующего газа стабилизируется и сжимает столб рабочей дуги. Это позволяет не касаться стенок сопла плазмотрона.

Виды сварки

Плазменная сварка, в зависимости от применяемого оборудования, может осуществляться:

  • проникающей и непроникающей дугой;
  • на токе любой полярности;
  • быть точечной и импульсной;
  • без присадочной проволоки и с присадочной проволокой;
  • вручную, с помощью полуавтоматов и автоматов.

Сварку можно вести на следующих токах:
В зависимости от силы сварочного тока различают 3 вида плазменной сварки:

  • малых (от 0, 1 до 25 А);
  • средних (от 25 до 150 А);
  • больших (свыше 150 А).

Сварку на малых токах называют микроплазменной и она используется чаще всего. Ее применяют для изготовления конструкций имеющих толщину не более 1,5 мм. Обычно эти видом сварки изготавливают тонкостенные емкости и трубы, приваривают тонкие детали к массивным, в ювелирной промышленности изготавливают украшения, соединяют детали, изготовленные из фольги, при производстве термопар.

Если сварка производится с применением присадочной проволоки, то обычно применяют цельнотянутую проволоку или специальный вид проволоки — порошковую.

Основные параметры плазменной сварки:

  • сила тока, измеряемая в амперах (А);
  • напряжение, измеряемое в вольтах ( В);
  • Ø канала сопла (указывается в мм);
  • Ø электрода (указывается в мм);
  • расход плазмообразующего газа (указывается в м/ч);
  • расход защитного газа (указывается в м/ч).

Технология плазменной сварки

Аппараты для плазменной сварки, выпускаемые различными производителями, изготавливаются, как правило, универсальными. С их помощью можно выполнять различные работы во всех пространственных положениях: нижнем, потолочном, вертикальном, горизонтально, наклонном. Технологический процесс изготовления конструкций состоит из подготовки изделия к сварке, выбора присадочного материала, если сварка производится с ним, и подготовки оборудования.

Деталь перед сваркой должна быть обезжирена, зачищена и тщательно закреплена. Сварщик в процессе сварки должен защищать органы зрения от излучения, использовать все способы и средства защиты для предупреждения термических ожогов, а также использовать вытяжную вентиляционную систему при сварке в помещении.

Сегодня в торговой сети можно приобрести различные модели аппаратов для осуществления плазменной сварки, как отечественного, так и зарубежного производства. Среди отечественных аппаратов большой популярностью пользуется мобильные плазменные аппарат «ПЛАЗАР», «ГОРЫНЫЧ», «МУЛЬТИПЛАЗ».и другие.

Например, «ГОРЫНЫЧ» представляет многофункциональный портативный аппарат, состоящий из генератора плазмы и блока питания и управления. Применяется для осуществления большого спектра работ по сварке, резке и пайке металлов. Питается от сети 220 В. Компактный, удобный в работе он пользуется у сварщиков особой популярностью. В качестве рабочей жидкости, в зависимости от вида осуществляемой работы, у него используется или дистиллированная вода или раствор этилового спирта в этой же воде. Такой аппарат с успехом применяют не только на производстве, строительстве, но и в быту.

Среди зарубежных производителей особое внимание привлекают аппараты производства Германии и Италии. Модели аппаратов для плазменной сварки и резки компании MERKLE Schweißanlagen-Тесhnik GmbН хорошо известны в разных уголках мира. Компания более 50 лет специализируется на выпуске оборудования и комплектующих для производства сварочных работ. Профессиональные модели плазменных аппаратов P 421 DC-PT11, P 601 DC-PT11 и P 601 AC/DC-PT11 используются на известных фирмах VOLKSWAGEN,MERCEDES-BENZ и других при производстве их продукции, известной во многих странах.

Производитель из Италии компания Telwin специализируется на производстве современных аппаратов для проведения плазменной сварки тоже более 50 лет. Модели Technica Plasma, Technology Plasma, Superplasma и другие оснащены защитой от перенапряжения, низкого и сильного тока, термической защитой, осуществляют автоматическое охлаждение плазматрона и имеют систему сигнализации о напряжении в горелке. Их отличают небольшие габариты, вес и они очень удобны в пользовании.

ие ручной плазменной сваркой различных соединений" 

понедельник, 14 декабря 2020 г.

15 декабря 2020года

Группа203

Предмет :"Техника и технология ручной дуговой сварки в среде защитных газов"

Тема занятия :" Выполнение плазме

Технология и техника выполнения плазменной сварки

   Технология плазменной сварки очень специфична, и работают с ней, как правило, те мастера, которые уже ознакомлены с другими видами сварки, с различными технологиями резки металла, а также, кто уже хорошо знаком с технологией аргонной сварки. Для использования плазменной сварки необходимо знать технику ее выполнения, которую мы сейчас подробно и в то же время, кратко, рассмотрим.

  Как правило, питание дуги в плазменной сварке, происходит при помощи переменного или же постоянного тока, однако обязательно прямой полярности, минуя при этом на электроде. Сварочная дуга же, возбуждается при помощи осциллятора, а для облегчения ее возбуждения, и возникновения дуги прямого действия, используется дежурная дуга, которая горит между электродом, и самим соплом горелки. Для того, чтобы поддерживать плазмообразующую дугу, необходимо напряжение до 120 В. А вот, например, для питания плазмотрона, оптимальным напряжением холостого хода является уже питание до 300 В.


  При помощи плазменной струи можно сваривать практически все виды металлов, как в нижнем, так и вертикальном положении. Причем, в качестве газа для образования плазмы, используется аргон или гелий. В свою очередь, эти газы будут служить в качестве защитных газов. Преимущества плазменной сварки следующие:

- возможность высокой производительности;

- существенно, низкая чувствительность к колебаниям и длине дуги;

- возможность устранения включения вольфрама в металл и шов.

   Так, без скосов кромок, можно сваривать металлы, толщиной до 15 мм, образовывая при этом провар специфической формы. При этом, возможно образование сквозного отверстия в поверхности основного металла, через которое плазменная струя выходит на другую сторону изделия. В итоге, металл, который был расплавлен в передней части изделия, перемещается в хвостовую часть, где он кристаллизируется и в итоге образует шов. То есть, процесс предусматривает как бы прорезание заготовки и заваривания места резки.

  Кроме всего прочего, плазменной струей можно также варить стыковые и угловые швы. Так, для выполнения стыкового соединения на металле, толщина которого 2 мм, нужно сваривать металл с отбортовкой кромок, а при толщине свыше 10 мм, как правило, рекомендуют выполнять скос кромок. При необходимости, к процессу задействуют и дополнительный металл. Сваривание деталей, толщина которых меньше 1 мм, может происходить при помощи микроплазменной сварки, где сила сварочного тока колеблется в пределах от 0,1 до 10 А.


 
Категория: Плазменная сварка | Добавил: xJusterx (16.09.2014)
Дуговая сварка 
Сварка чугуна разнородными металлами 
Как правильно учитывать термические воздействие на металл во время сварки? 
«MICOR» - новое поколение сварочных аппаратов 
Профессиональные сварочные аппараты 
Сварка труб 
Cечение сварочного кабеля 
Выбор сварочного аппарата 
Электроды с рутиловым покрытием 
Электроды для сварки. Типы и назначение 
Способы резки металла 
Что такое горновая, или кузнечная, сварка? 
Cварка линолеума 
Приемы удержания металла при наложении корневого шва 
Как отличить шлак от металла? 
Сварочные аппараты для полипропиленовых труб 
Все, что нужно знать о литейной сварке 
Технология горячей сварки чугуна 
Электроды с органическими покрытиями 
Сварочный инвертор SSVA-160-2 
Просмотров: 3112 Рейтинг: 5.0/1
Всего комментариев: 0

нной сварки  различных соединений"

15 декабря 2020

Группа 203

Предмет :"Техника и технология частично механизированной сварки (наплавки)

Тема занятия :"Защитные газы для сварЗащитные газы для сварки Защитными газами называют инертные и активные газы, которые используют в нескольких сварочных процессах, в первую очередь для механизированной сварки и ручной дуговой сварке вольфрамовым электродом. Предназначение защитного газа — защита зоны сварки от воздействия с кислородом и других элементов находящихся в воздухе. В зависимости от свариваемого материала влияние атмосферных газов может затруднять процесс сварки и приводит к снижению качества шва. Защитные газы делятся на две категории: инертные и активные. Неправильный выбор сварочного газа может привести к пористости шва, слабой дуге и чрезмерному разбрызгиванию металла. Инертные защитные газы Инертные газы используют для сварки вольфрамовым электродом, а также для сварки цветных металлов в среде защитных газов. Среди благородных газов только два, аргон и гелий достаточно экономичны, чтобы их можно было использовать при сварке. В чистом виде аргон и гелий используются только для некоторых цветных металлов. Аргон (Ar) — бесцветный газ, не имеет запаха, не горючий, тяжелее воздуха в 1,5 раза. Аргон не растворяется в металлах. Рекомендуется для сварки сталей и чистого алюминия. Гелий (He) — бесцветный газ, не имеет запаха, легче воздуха, поэтому требует повышения расхода газа. При одинаковых значениях силы тока, дуга в гелии выделяет до 2 раз больше энергии, чем в аргоне. Гелий используют для сварки химически чистых и активных материалов, а также сплавов алюминия и магния. Азот (N2) не вступает в реакцию с медью, поэтому при сварке меди и ее сплавов азот можно считать инертным газом. Активные защитные газы Способны защищать зону сварки от воздействия воздуха, но сами растворяются в жидком металле или вступают в химическое взаимодействие с ним. Активные защитные газы включают углекислый газ, кислород, азот и водород. Большинство из этих газов влияют на качество сварного шва и процесс сварки, но при не большем их содержании в контролируемых количествах могут улучшить свойства шва. Кислород (O2) — газ без запаха, вкуса и цвета. Является негорючим газом, но активно поддерживает горение. Самостоятельно как защитный газ не используется, но применяется для приготовления сварочных смесей с инертными и активными газами. Углекислый газ (CO2) — бесцветный газ имеющий слабый запах, с резко выраженными окислительными свойствами. Углекислый газ тяжелее воздуха в 1,5 раза, пригодный для сварки чугуна, низко- и среднеуглеродистых сталей, низколегированных коррозионностойких сталей. Водород (H) — используется для сварки никеля и некоторых нержавеющих сталей, особенно толстых деталей. Улучшает текучесть металла и чистоту поверхности, однако может вызывать хрупкость при взаимодействии с углеродистыми сталями, поэтому его использование ограничено некоторыми нержавеющими сталями. Газовые смеси Газовые смеси служат для улучшения процесса сварки и качества сварного шва за счет использования сильных сторон каждого из газов. Смеси аргона и углекислоты в соотношении 75-80% и 20-25% обеспечивает понижение разбрызгивания жидкого металла, увеличивает производительность и обеспечивает хорошие свойства сварочного соединения. Требует более тщательной очистки сварочных кромок перед сваркой, чем при сварке в чистой углекислоте. Рациональное применение для сварки низкоуглеродистых и низколегированных сталей. Смесь аргона (50%) и гелия (50%) используется для сварки титановых и алюминиевых сплавов. Смесь аргона и кислорода (1-5%) способствует стабилизации процесса сварки, увеличивает текучесть жидкого металла и является причиной мелкокапельного переноса металла. Рационально использование для сварки низкоуглеродистых сталей и нержавейки. Смесь углекислого газа (60-80%) и кислорода (20-40%) способствует повышению температуры расплавленного металла и окислительных свойств. Для сварки в этой смеси используют проволоки с повышенным содержанием раскислительных вещество, например проволока марки Св-08Г2СЦ. Рациональное применение для сварки углеродистых, легированных и некоторых высоколегированных сталей. Трехкомпонентная смесь аргона (75%), углекислоты (20%) и кислорода (5%) дает наиболее лучший эффект при сварке углеродистых сталей, нержавеющих и высоколегированных сталей. Стабилизирует процесс сварки, понижает разбрызгивание, позволяет избежать пор

Источник: http://osvarke.net/materialy/zashhitnye-gazy/ки плавлением " 

15 декабря 2020

Группа 203

Предмет :"Техника и технология частично механизированной сварки (наплавки)

Тема занятия :"Сварочная пр

Виды сварочной проволоки

При проведении сварочных работ используются такие виды проволоки:

  • порошковая. Востребована при работе с углеродистой сталью, которая впоследствии будет подвержена термической обработке;
  • алюминиевая. Применяется при сварке заготовок, выполненных из такого же материала. Допускается содержание кремния, марганца, магния и других включений);
  • нержавеющая. Подходит для работы с нержавеющими металлами: сталь с содержанием хрома или никеля;
  • омедненная – для работы с высоко и среднелегированной сталью;
  • стальные. Предназначены для сваривания стали средне- и низколегированной.

Проволока для нержавеющей стали

Такая присадочный материал используется в случаях, когда в инертной среде сваривается сталь с содержанием хрома или никеля. Основные достоинства:

  • на выходе получается шов высокого качества;
  • на поверхности сварного соединения нет трещин;
  • шов устойчив к коррозии;
  • небольшое количество брызг;
  • стабильность дуги.

Нержавеющая сварочная проволока обладает важным достоинством: с ее помощью формируется шов с повышенным сроком службы. Она производится из высоколегированной стали, в которой содержание никеля, хрома и прочих аналогичных включений высоко. Они сводят к минимуму вероятность образования ржавчины или начала коррозионных процессов.

Проволока бывает сплошной и порошковой. Первая используется для работы в инертной среде или под флюсом. Защитные газы необходимы для того, чтобы исключить проникновение атмосферного кислорода, который сможет окислить нержавейку в процессе термического соединения. Безусловно, это отрицательно повлияет и на качество сварного шва.

Порошковые расходники представляют собой тонкостенную трубку, внутрь которой засыпается флюс и дополнительные элементы для газообразования. Их преимущество заключается в том, что не требуется инертная среда. Защитную оболочку такие присадочные материалы формирую сами. Их принято называть самозащитными.

Во время работы расходник проходит через токоподводящий наконечник. Из-за этого его диаметр может несколько уменьшиться, что в конечном итоге снижает качества сварного соединения. Поэтому проволоку принято делить на нормальную и повышенной точности. Диаметр варьируется в широком диапазоне значений: от 0,13 до 6 миллиметров. Ключевой параметр, влияющий на выбор присадочной проволоки для сваривания заготовок из нержавейки – соответствие материала деталей и расходных элементов.

Омедненная проволока

Материал обладает таким же набором достоинств, что и проволока для сваривания нержавеющей стали. Плюс ко всему он также способствует снижению расхода наконечников, независимо от марки сварочного аппарата. Основное предназначение – соединение высоколегированных и углеродистых сталей в защищенной среде.

На потребительский рынок расходник поставляется намотанным на пластиковую кассету. Благодаря удобству использования повышается результативность работы специалистов. Стандартная толщина омедненной проволоки составляет 0,6; 0,8 и 1 мм. Она упрощает повторный поджиг сварочной дуги и поддерживает стабильность ее горения на разных режимах.

Классический пример такого расходного материала – проволока СВ-08Г2С, имеющая в своем составе 1% кремния, 2% марганца и 0,8% углерода. Еще один вариант – это сварочная проволока марки esab, предназначенная для работы с большим ассортиментом сталей, включая инструментальную, судовую, штампованную; нержавейку, алюминий и даже чугун.

Стальная проволока

Применяется в большинстве направлений производственной деятельности человека. Характеризуется большим количеством показателей, основными из которых являются диаметр сечения, прочность и состав материала, использованного в изготовлении. Существует много разновидностей стальной проволоки: армированная, пружинная сварочная, колючая и другие. Маркировка материала, предназначенного для сварочных работ, содержит аббревиатуру «Св». Поставляется разных диаметров: от 0,3 мм до 12 мм.

Существует более полусотни разных марок продукции, которые можно разнести по трем группам:

  1. Для стали с низким содержанием углерода. В качестве примера: Св-10Г2, Св-08, Св-ЮГЛ.
  2. Для сваривания низко- и среднелегированных заготовок. Подойдет проволока марок Св-08Г2С, Св-18ХС, Св-08ГС и другая.
  3. Для соединения конструкций из высоколегированной стали: Св-12Х13, Св-08Х14ГНТ.

В некоторых случаях поверхность стальной проволоки покрывается тонким слоем меди. Делается это для защиты металла от окисления и улучшения его электропроводности.

Стальная проволока используется в работе с инертными газами или под флюсом. Это наиболее подходящий для аргонной сварки расходный материал. В качестве легирующих элементов при изготовлении используются хром, марганец, никель, титан, вольфрам или молибден. Благодаря трем первым компонентам есть возможность соединять нержавеющую сталь с высоким содержанием углерода.

Алюминиевая проволока

Используется в работе с алюминиевыми сплавами, в которых содержание кремния не превышает 3%, а меди – от 3 до 5%. Продукция, выпускаемая для полуавтоматических сварочных аппаратов, делается из алюминия, который положительно влияет на формирование шва:

  • придает дополнительной прочности;
  • в точности соответствует по цвету заготовкам;
  • обладает такой же устойчивостью к коррозии, как и любой иной алюминиевый сплав.

Наиболее часто применяется в автомобильном производстве и судостроении. На третьем месте по востребованности находятся организации, где свариваемые конструкции взаимодействуют с водой. Характеризуется отличной пластичностью и небольшим весом; чаще всего применяется в газосварке. Пригоден для соединения других цветных металлов.

На практике нет металлических деталей или конструкций, которые бы состояли из чистого алюминия. всегда используются дополнительные включения, которые улучшают те или другие характеристики. Это утверждение справедливо и для самой сварочной проволоки, хотя нередко количество добавок измеряется не превышает одного процента. К примеру, всего 0,2% титана дают возможность специалисту положить мелкозернистый шов, что крайне необходимо при выполнении точных работ.

Тем не менее, по ГОСТу проволока из чистого алюминия определена в отдельную категорию. Помимо нее существуют сплавы с магнием, медью или кремнием. В дополнение к положениям государственного стандарта есть и технические условия, которые регламентируют выпуск других сплавов: с хромом, а также с кремнием и магнием.

Важным условием качественного соединения является соответствие состава заготовок и расходного материала. Как исключения может рассматриваться только магний, который активно испаряется при высокой температуре. Его состав в присадке может быть большим от номинального на 10-20%.

Порошковая сварочная проволока

Порошковая сварочная проволока востребована при работе с углеродистой, среднеуглеродистой и низколегированной сталью. Для качественного результата важно отсутствие газовой среды. Такая проволока называется еще флисовой. Обусловлено это тем, что присадка не полностью металлическая, а наполнена внутри порошком – флисом. Его содержание составляет примерно 15-40 процентов от общей массы. От конкретной величины зависит свойство материала.

Основным достоинством расходного материала является высокое качество сварного соединения, простота удаления шлака, высокая стабильного электрической дуги во время сварочного процесса. В зависимости от особенностей наполнителя принято делить порошковую проволоку на пять групп:

  • рутил-флюоритная. Предназначена для низколегированной стали;
  • органическая рутиловая отлично соединяет низкоуглеродистые металлы;
  • рутиловая разработана для стали со средним количеством углерода;
  • флюоритно-карбонатная применяется при работе с низколегированными и низкоуглеродистыми металлами, которые используются в создании ответственных конструкций;
  • флюоритная является промежуточным звеном между предыдущим типом проволоки и рутил-флюоритной.

Довольно часто порошковую проволоку путают со стальной. К примеру, марку esab одни производители называют стальной, а другие – порошковой. Такая ситуация вводит покупателей в заблуждение. Было бы справедливо флюсовые присадки выделить в отдельную группу. И это было бы справедливо, поскольку флюс кратно увеличивает возможности полуавтомата. И еще один очень важный плюс заключается в том, что порошковый расходник является залогом более качественного сварного соединения по сравнению с обычной металлической проволокой.

Прочность сварного шва во многом зависит от правильности выбора расходного материала. Опытные сварщики часто рекомендуют новичкам остановить выбор на универсальных материалах. И эта рекомендация вполне справедлива, но не всегда. К примеру, без инертных газов результат будет посредственным.

Маркировка сварочной проволоки

Чтобы правильно выбрать присадку, нужно заблаговременно знать, какой вид работы планируется выполнять. Дело в том, что каждый вид проволоки рассчитан на определенную работу. Разрезать металл вряд ли получится с расходным материалом, предназначенным для сварки полуавтоматом.

Плюс к этому расходники отличаются диаметром, который подбирается в зависимости от толщины заготовки. Чем толще свариваемые детали – тем больше должен быть диаметр присадки. А варьируется он в широком диапазоне значений: от 0,8 до 12 мм. Чаще всего сварщикам требуется сравнительно тонкие прутки – около 3 миллиметров.

Планируя сварить две титановые заготовки, логично предположить, что специалист используется соответствующую проволоку для сварки титана. Важно знать и ее состав. Ведь в проволоку часто добавляют разные присадки; разной бывает и уровень легированности. Качество шва зависит от совместимости основного материала и присадки. Чем однороднее их состав, тем лучше для конечного результата.

Вся информация «зашита» в маркировке. Чтобы определить, что обозначает конкретный символ, достаточно рассмотреть несложный пример. Аббревиатурой «Св-06Х19Н9Т» обозначается один из наиболее популярных видов присадки. Две первые буквы «Св» говорят о том, что материал предназначен только для сварки – резки или иные виды работ с ним не выполнить. То есть, первые две буквы обозначают тип расходного материала. Помимо сварочной проволока бывает наплавочной («Нп») и порошковой («Пп»).

Следующие две цифры обозначают процентное содержание углерода. 06 – это шесть сотых процента (0,06%) от общей массы материала. Далее расположена информация о включения и их долях. Буква «Х» информирует о том, что в составе присадки есть хром, а его количество равно «19» - 19%. Никеля («Н») в присадке содержится 9%, а вот сколько титана («Т») – не указано. Дело в том, что если количество включения меньше 1%, то такие данные в маркировку не включаются. То есть, титана в проволоке меньше одного процента.

Осталось запомнить, что обозначают определенные символы, которые используются в маркировке проволоки:

  • Г – марганец;
  • Д – медь;
  • М – молибден;
  • С – кремний;
  • Ц – цирконий;
  • Ф – ванадий;
  • Ю – алюминий.
Читайте также: Маркировка электродов для ручной дуговой сварки

Популярные марки

Новичкам непросто разобраться в ассортименте существующих на рынке видов сварочных проволок. Ведь их общее число превышая 70 вариантов. Для начала неплохо будет знать хотя бы наиболее популярные, которые чаще всего используются и в профессиональной и любительской среде.

Одна из часто применяемых марок – Св-10Г1СН. Предназначена для работы в защитной среде с заготовками из низколегированной стали. Три следующие марки – Св-10ГА, Св08 и Св08А лучше всего подходят для аргонодуговой сварки при соединении низкоуглеродистых металлов. Перечисленные марки проволоки хорошо показали себя в газовой сварке. Особенно, если речь идет о соединении водопроводных труб.

Если присадочный материал обозначен аббревиатурами Св08ХН2М, Св08ХМФА и Св08ГС или Св-06Х19Н9Т, то его можно смело использовать для сваривания низколегированной стали. Несмотря на бюджетную стоимость, они выдают очень хороший конечный результат. Для работы с высоколегированной сталью специалисты чаще всего выбирают марки Св-08Н50, Св30Х25Н16Г7, Св07Х19Н10Б, Св10Х17Т и Св08Х20Н9Г7Т.оволока" 

 04.06.2021 года Группа 311 Предмет :"Устройство, техническое обслуживание и ремонт автомобилей" Экзаменационный материал для сдач...